Synthesis and Spectroscopic Characterization of S-Ethyl, S-Isopropyl, S-n-Propyl, and S-n-Butyl Trithiocarbonate (Trixanthate) Derivatives of Trimethyl- and Triphenylgermane and Diphenyldigermane. Crystal Structure of Ph₂Ge[S₂CS(*i*-Pr)]₂

John E. Drake* and Jincai Yang

Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

Received June 16, 1993®

The S-alkyl trithiocarbonate (trixanthate) derivatives Me₃Ge[S₂CSR], Ph₃Ge[S₂CSR], and Ph₂Ge[S₂CSR]₂, where R = Et, *i*-Pr, *n*-Pr, and *n*-Bu, have been prepared in 73-85% yields by the reaction of the potassium salt of the appropriate trithiocarbonic (trixanthic) acid with iodotrimethylgermane, bromotriphenylgermane, or dichlorodiphenylgermane. The compounds were characterized by infrared, Raman, and ¹H and ¹³C NMR spectroscopy. The crystal structure of Ph₂Ge[S₂CS(*i*-Pr)]₂ was determined, and it crystallizes in space group $P\overline{1}$ (No. 2) with the cell parameters a = 10.752(9) Å, b = 13.36(1) Å, c = 9.64(2) Å, $\alpha = 105.8(1)^{\circ}$, $\beta = 113.2(1)^{\circ}$, $\gamma = 91.79(9)^{\circ}$, V = 1211(3) Å³, and Z = 2; R = 0.0638, and $R_w = 0.0626$. The environment about germanium is essentially that of a distorted tetrahedron with monodentate linkages resulting in S-Ge-S and C-Ge-C angles of 87.3(2) and 118.1-(3)°, respectively, and S-Ge-C angles ranging from 110.3(3) to 113.4(3)°. The Ge-S bond distances are 2.278(5) and 2.284(5) Å, and the Ge-C bond distances are 1.925(7) and 1.941(9) Å. All of these trixanthate derivatives are unstable as a result of the ready elimination of carbon disulfide.

Introduction

Reports on O-alkyl dithiocarbonates (xanthates) as ligands, particularly on transition metals,^{1,2} are considerably more extensive than those on the S-alkyl trithiocarbonate (trixanthate) analogues. Representative examples of work on trixanthates include earlier attempts to thoroughly characterize transition metal derivatives³ and confirmation that trixanthates are usually bidentate4-6 and that carbon disulfide elimination is characteristic of metal trixanthate complexes.^{4,5} A logical extension of our studies on the xanthate derivatives of germanium⁷⁻¹⁰ is to establish the existence of germanium trixanthate derivatives. Because of problems encountered on stability with other sulfur-containing germanium derivatives and the anticipated problem of compounds also undergoing CS₂ elimination, we selected organogermanium derivatives containing only one trixanthate group as the first series of compounds to be examined, namely $R'_3Ge[S_2CSR]$ in which R' = Ph or Me and R = Et, i-Pr, n-Pr, or n-Bu. This was extended to include the corresponding $Ph_2Ge[S_2CSR]_2$ series.

Experimental Section

Starting Materials. Bromotriphenyl-, dichlorodiphenyl-, and iodotrimethylgermane were obtained from Alfa Products. Typically, potassium S-ethyl trithiocarbonate was prepared by placing KOH (4.5 g, 0.8 mmol) in a flask and adding to it a slight excess of EtSH (6.2 g, 1.0 mmol). The

- * Abstract published in Advance ACS Abstracts, February 1, 1994.
- Burns, R. P.; McCullough, F. P.; McAuliffe, C. A. Adv. Inorg. Chem. Radiochem. 1980, 23, 211.
- (2) Zeiss, W. C. Acad. R. Sci. (Copenhagen) 1815, 1, 1.
- (3) Bruce, R.; Knox, G. R. J. Organomet. Chem. 1966, 6, 67.
- (4) Coucouvanis, D.; Lippard, S. J.; Zubieta, J. A. J. Am. Chem. Soc. 1970, 92, 3342.
- (5) Andrews, J. M.; Coucouvanis, D.; Fackler, J. P., Jr. Inorg. Chem. 1972, 3, 493.
 (6) Winogard, R. A.; Lewis, D. L.; Lippard, S. J. Inorg. Chem. 1975, 14,
- (d) windgard, K. A., Lewis, D. L., Elppard, S. J. Inorg. Chem. 1975, 14 2601.
- (7) Drake, J. E.; Sarkar, A. B.; Wong, M. L. Y. Inorg. Chem. 1990, 29, 785.
 (8) Drake, J. E.; Mislanker, A. G.; Wong, M. L. Y. Inorg. Chem. 1991, 30, 2174
- (9) Drake, J. E.; Mislanker, A. G.; Yang, J. Inorg. Chem. 1992, 31, 5543.
- (10) Drake, J. E.; Mislanker, A. G.; Yang, J. Inorg. Chim. Acta 1993, 211, 37.

flask was surrounded by an ice bath, and CS₂ (approximately 7.5 mL) was added drop by drop, after which the reaction was allowed to proceed for 2 h. Ether was added with stirring in two portions of approximately 25 and 15 mL before KS₂CSEt was filtered off and dried under vacuum for 1-2 days to give an 85% yield of the trithiocarbonate salt. Its purity was then verified on the basis of its NMR and IR spectra. Potassium S-isopropyl, S-n-propyl, and S-n-butyl trithiocarbonates were prepared in a similar manner and their purities also verified on the basis of their NMR and IR spectra. Distilled carbon disulfide (dried over P_4O_{10}) was used in all of the reactions. These reactions and those used to prepare the germane derivatives were carried out on a vacuum line to exclude air and moisture.

Preparation of the Ph3Ge[S2CSR] and Me3Ge[S2CSR] Derivatives. Ph3-Ge[S₂CSEt] (1). Typically, an excess of dried KS₂CSEt (0.22 g, 1.5 mmol) was placed in a flask with a side arm containing Ph₃GeBr (0.35 g, 0.91 mmol). The flask was degassed, and CS₂ (approximately 6 mL) was distilled into it at -196 °C. The liquid N_2 trap was removed, and when the flask had reached ambient temperature, Ph3GeBr was tipped into the solution by tilting the side arm. The reaction was allowed to proceed for 4-5 h at 0 °C, at which time unreacted KS₂CSEt and the KBr that had formed were filtered off. The solvent was allowed to evaporate under vacuum to give Ph₃Ge[S₂CSEt] as an oil (0.30 g, 0.69 mmol; yield 75%). The other triorganogermanium trixanthate derivatives were similarly formed in 73-85% yields by the addition of an excess of the appropriate KS₂CSR salt, where R = Et, *i*-Pr, *n*-Pr, or *n*-Bu, to Ph3GeBr at 0 °C or Me3GeI at -78 °C (in approximately 0.5-1.0-mmol amounts) followed by dissolution in CS2. Thus were formed the following compounds: $Ph_3Ge[S_2CS(i-Pr)](2)$, yield 85%; $Ph_3Ge[S_2CS(n-Pr)](3)$, yield 77%; $Ph_3Ge[S_2CS(n-Bu)]$ (4), yield 78%; $Me_3Ge[S_2CSEt]$ (9), yield 80%; $Me_3Ge[S_2CS(i-Pr)]$ (10), yield 73%; $Me_3Ge[S_2CS(n-Pr)]$ (11), yield 75%; Me₃Ge[S₂CS(n-Bu)] (12), yield 75%

Preparation of the Ph₂Ge[S₂CSR]₂ Derivatives. Ph₂Ge[S₂CSEt]₂ (5). Typically, a large excess of KS₂CSEt (0.90 g, 5.1 mmol) was added to degassed Ph₂GeCl₂ (0.25 g, 0.84 mmol) dissolved in CHCl₃ (approximately 10 mL) in the manner described above but with the temperature held at 0 °C. The reaction was allowed to proceed for 4 h at 0 °C before the potassium chloride and unreacted xanthate salt were filtered off and the solvent was allowed to evaporate to give Ph₂Ge[S₂CSEt]₂ as an oil (0.32 g, 0.65 mmol; yield 77%). If a large excess of xanthate salt is not used, then a mixture of products results containing Ph₂GeCl[S₂CSEt]. The use of CS₂ as solvent with a reaction temperature of -78 °C gave essentially the same results. The following compounds were similarly formed: Ph₂-Ge[S₂CS(*i*-Pr)]₂ (6), yield 78% (mp 101–103 °C); Ph₂Ge[S₂CS(*n*-Pr)]₂ (7), yield 79%; Ph₂Ge[S₂CS(*n*-Bu)]₂ (8), yield 77%. Despite extensive efforts to bring about crystallization, only 6 could be crystallized; all of

^{*} To whom correspondence should be addressed.

Table 1. Crystallographic Data for $Ph_2Ge[S_2CS(i-Pr)]_2$ (6)

	• ·		· • • • •
chem formula	C ₂₀ H ₂₄ S ₆ Ge	fw	529.36
a, Å	10.752 (9)	space group	PĪ (No. 2)
b, Å	13.36(1)	Ť, °C	30
c, Å	9.64 (2)	λ, Å	0.710 69
α , deg	105.8 (1)	$\rho_{\rm obsd}, {\rm g \ cm^{-3}}$	1.44
β , deg	113.2 (1)	$\rho_{\rm calc}, \rm g \ \rm cm^{-3}$	1.45
γ , deg	91.79 (9)	μ , cm ⁻¹	17.50
V, Å ³	1211 (3)	$R(F_0)^a$	0.0638
Ζ	2	$R_{\rm w}(F_{\rm o})^a$	0.0626

 ${}^{a}R = \sum ||F_{o}| - |F_{c}|/\sum |F_{o}|$ and $R_{w} = [\sum w(|F_{o}| - |F_{c}|)^{2}/\sum wF_{o}^{2}]^{1/2}$.

the other compounds remained as oils. Attempts to distill any of the oils under vacuum resulted in the rapid expulsion of CS_2 .

Carbon Disulfide Elimination. The ¹H and ¹³C NMR spectra of sealed samples of solutions of compounds 1-4 held at room temperature showed a steady decrease in the intensity of the signals attributable to the Ph₃-Ge[S₂CSR] species. The rate of decline was first order, with typical values of rate constants being of the order of 1×10^{-1} h⁻¹. Thus, after 1-2 days, the original signals disappeared to be replaced by peaks attributable to the corresponding Ph3GeSR compounds. Organogermanium sulfides have been known for some time,¹¹ and the independent preparation of authentic samples provided confirmation of their formation. Their synthesis was based on an earlier report involving the interaction, in the presence of pyridine, of appropriate organo(halo)germanes with mercaptans, the latter being available because of their use for the preparation of the trixanthate salts. In the ¹³C NMR spectra, a peak at 192.7 ppm, attributable to CS_2 , steadily increased in intensity with time as the peak originally observed at approximately 222 ppm, attributable to the S_2CS carbon, decreased in intensity to disappear after 1-2 days.

Similar results were obtained for compounds 9-12 under identical conditions with the exception that weeks rather than days were required before peaks attributable to the Me₃Ge[S₂CSR] species were totally lost. Peaks assignable to the R groups in other species are as follows (ppm). Ph₃GeSR: 2.45, 1.15 (Et); 2.90, 1.21 (*i*-Pr); 2.40, 1.50, 0.84 (*n*-Pr); 2.45, 1.53, 1.30, 0.84 (*n*-Bu). Me₃GeSR: 2.52, 1.27 (Et); 3.02, 1.30 (*i*-Pr); 2.44, 1.56, 0.94 (*n*-Pr); 2.48, 1.55, 1.36, 0.88 (*n*-Bu).

Similar studies on compounds 5–8 resulted in more complex NMR spectra being observed for the freshly-prepared $Ph_3Ge[S_2CSR]_2$ species and as compared to the final spectra, which contained only peaks attributable to CS_2 and $Ph_2Ge[Sr]_2$, those arising from the R groups of the latter being seen at 2.61, 1.32 (Et); 2.89, 1.18 (*i*-Pr); 2.55, 1.57, 0.91 (*n*-Pr); and 2.57, 1.52, 1.35, 0.81 ppm (*n*-Bu). The additional peaks were entirely consistent with the formation of the intermediate $Ph_2Ge[S_2-CSR][SR]$ compounds. The relevant ¹H and ¹³C NMR data are presented in Tables 6 and 7.

Physical Measurements. The ¹H and ¹³C NMR spectra were recorded on a Bruker 300 FT NMR spectrometer in CDCl₃ solutions. The infrared spectra were recorded on an Nicolet 5DX FT spectrometer as KBr pellets or as oils smeared between KBr windows in the 4000–400-cm⁻¹ region. The far-infrared spectra were recorded on a Bomen DA3 infrared spectrometer between polyethylene plates as oils or as Nujol mulls. The Raman spectra were recorded on a JEOL-XY Raman spectrometer using the 5145-Å exciting line of an argon ion laser with samples sealed in capillary tubes. The melting point was determined on a Fisher-Johns apparatus.

X-ray Crystallographic Analysis. A yellow block crystal of Ph₂Ge- $[S_2CS(i-Pr)]_2$ (6) was sealed in a thin-walled glass capillary that was then mounted on a Rigaku AFC6S diffractometer, with graphite-monochromated Mo K α radiation.

Cell constants and an orientation matrix for data collection, obtained from a least-squares refinement using the setting angles of 22 carefully centered reflections in the range 25.01 < 2θ < 29.75° corresponded to a triclinic cell whose dimensions are given in Table 1. On the basis of packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be $P\bar{I}$ (No. 2).

The data were collected at -30 ± 1 °C using the $\omega -2\theta$ scan technique to a maximum 2θ value of 50.0°. The ω scans of several intense reflections, made prior to data collection, had an average width at half-height of 0.34° with a takeoff angle of 6.0°. Scans of $(1.73 + 0.30 \tan \theta)^\circ$ were made at a speed of 16.0°/min (in ω). The weak reflections ($I < 10.0\sigma(I)$) were rescanned (maximum of two rescans), and the counts were

Table 2. Final Fractional Coordinates and B(eq) Values for Non-Hydrogen Atoms of Ph₂Ge[S₂CS(*i*-Pr)]₂ (6) with Standard Deviations in Parentheses

atom	x	у	Z	$B(eq),^{a} Å^{2}$
Ge	0.0721(1)	-0.2471(1)	-0.2461(1)	2.15(4)
S (1)	0.1572(3)	-0.3847(2)	-0.3581(4)	3.1(1)
S(2)	0.3911(3)	-0.2593(3)	-0.0564(4)	3.6(1)
S(3)	0.4212(3)	-0.4437(3)	-0.2960(4)	3.6(1)
S(4)	-0.1296(3)	-0.3076(2)	-0.4672(4)	2.7(1)
S(5)	-0.1853(3)	-0.1136(3)	-0.2715(4)	3.2(1)
S(6)	-0.3963(3)	-0.2539(2)	-0.5837(4)	3.0(1)
C(1)	0.329(1)	-0.3538(9)	-0.223(1)	2.9(4)
C(2)	0.599(1)	-0.395(1)	-0.160(2)	3.8(5)
C(3)	0.682(1)	-0.424(1)	-0.257(2)	5.9(7)
C(4)	0.642(1)	-0.435(1)	-0.017(2)	6.3(7)
C(5)	-0.233(1)	-0.2170(9)	-0.429(1)	2.6(4)
C(6)	-0.497(1)	-0.1564(9)	-0.523(1)	3.4(5)
C(7)	-0.556(2)	-0.189(1)	-0.419(2)	6.7(8)
C(8)	-0.604(1)	-0.145(1)	-0.675(2)	4.5(5)
C(9)	0.0612(8)	-0.2625(6)	-0.0565(7)	2.3(2)
C(10)	0.0841(8)	-0.3568(5)	-0.0216(8)	2.9(2)
C(11)	0.0753(8)	-0.3695(5)	0.113(1)	3.6(3)
C(12)	0.0436(8)	-0.2879(6)	0.2134(8)	4.1(3)
C(13)	0.0207(8)	-0.1936(5)	0.1785(8)	3.8(3)
C(14)	0.0295(8)	-0.1809(4)	0.0436(9)	2.5(2)
C(15)	0.1516(7)	-0.1125(4)	-0.2349(9)	2.0(2)
C(16)	0.2387(8)	-0.0419(6)	-0.0881(7)	3.4(3)
C(17)	0.3009(7)	0.0539(5)	-0.0801(7)	4.0(3)
C(18)	0.2759(8)	0.0793(5)	-0.219(1)	3.6(3)
C(19)	0.1888(8)	0.0087(6)	-0.3657(7)	3.6(3)
C(20)	0.1266(7)	-0.0871(5)	-0.3737(7)	3.1(2)
		_		

 ${}^{a}B(eq) = (8\pi^{2}/3)\sum_{i=1}^{3}\sum_{j=1}^{3}U_{ij}a_{i}^{*}a_{j}^{*}a_{i}a_{j}.$

Table 3. Important Interatomic Distances (Å) and Angles (deg) for $Ph_2Ge[S_2CS(i-Pr)]_2$ (6)

Ge-S(1)	2.278(5)	Ge-S(4)	2.284(5)
GeC(9)	1.941(9)	Ge-C(15)	1.925(7)
S(1)-C(1)	1.75(1)	S(4) - C(5)	1.74(1)
S(2)-C(1)	1.62(1)	S(5) - C(5)	1.64(1)
S(3) - C(1)	1.75(1)	S(6) - C(5)	1.74(1)
S(3) - C(2)	1.82(1)	S(6)-C(6)	1.84(1)
C(2) - C(3)	1.51(2)	C(6)–C(7)	1.52(3)
C(2)–C(4)	1.52(2)	C(6)–C(8)	1.52(2)
GeS(2)	3.224(5)	GeS(5)	3.304(5)
GeS(3)	4.752(6)	GeS(6)	4.783(8)
S(1)-Ge- $S(4)$	87.3(2)	C(9)-Ge-C(15)	118.1(3)
S(1)-Ge-C(9)	110.6(3)	S(4)-Ge-C(15)	110.3(3)
S(4)-Ge-C(15)	113.4(3)	S(4)-Ge-C(9)	113.2(3)
Ge-S(1)-C(1)	100.3(3)	Ge-S(4)-C(5)	102.6(3)
S(1)-C(1)-S(2)	125.0(8)	S(4)-C(5)-S(5)	125.3(8)
S(1)-C(1)-S(3)	108.8(6)	S(4)-C(5)-S(6)	109.2(6)
S(2)-C(1)-S(3)	126.1(7)	S(5)-C(5)-S(6)	125.5(8)
C(1)-S(3)-C(2)	104.7(6)	C(5) - S(6) - C(6)	104.5(5)
S(3)-C(2)-C(3)	106.2(8)	S(6)-C(6)-C(8)	106.1(9)
S(3)-C(2)-C(4)	112(1)	S(6)-C(6)-C(7)	111(1)
C(3)-C(2)-C(4)	114(1)	C(7)-C(6)-C(8)	114(1)
S(1)-Ge $S(2)$	63.1(2)	S(4)-GeS(5)	61.7(2)

accumulated to ensure good counting statistics. Stationary-background counts were recorded on each side of the reflection. The ratio of peak counting time to background counting time was 2:1. The diameter of the incident beam collimator was 0.5 mm, and the crystal to detector distance was 250.0 mm.

Of the 4522 reflections which were collected, 4271 were unique ($R_{\rm int}$ = 0.115). The intensities of three representative reflections which were measured after every 150 reflections remained constant throughout data collection, indicating crystal and electronic stability (no decay correction was applied).

The linear absorption coefficient for Mo K α radiation is 17.5 cm⁻¹. An empirical absorption correction, based on azimuthal scans of several reflections, was applied, which resulted in transmission factors ranging from 0.68 to 1.00. The data were corrected for Lorentz and polarization effects.

The structure was solved by direct methods.¹² The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were included in their idealized positions with C-H set at 0.95 Å and with isotropic thermal

⁽¹¹⁾ Hooton, K. A.; Allred, A. L. Inorg. Chem. 1965, 4, 671.

Figure 1. ORTEP diagram of the molecule $Ph_2Ge[S_2CS(i-Pr)]_2$ (6). Atoms are drawn with 30% probability ellipsoids and hydrogen atoms are omitted for clarity.

parameters set at 1.2 times that of the carbon atom to which they were attached. The final cycle of full-matrix least-squares refinement¹³ was based on 1925 observed reflections $(I > 3.00\sigma(I))$ and 160 variable parameters and converged (largest parameter shift was 0.001 times its esd) with weighted and unweighted agreement factors of $R = \sum ||F_0|$ - $|F_{\rm c}|/\Sigma|F_{\rm o}| = 0.0638$ and $R_{\rm w} = [\Sigma w(|F_{\rm o}| - |F_{\rm c}|)^2 / \Sigma w F_{\rm o}^2]^{1/2} = 0.0626$.

The standard deviation of an observation of unit weight¹⁴ was 1.50. The weighting scheme was based on counting statistics and included a factor (p = 0.03) to downweight the intense reflections. Plots of $\sum w(|F_0|)$ $-|F_c|^2$ versus $|F_o|$, reflection order in data collection, $(\sin \theta)/\lambda$, and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.76 and -0.51 $e/Å^3$, respectively.

Neutral-atom scattering factors were taken from Cromer and Waber.¹⁵ Anomalous-dispersion effects were included in F_{c} ;¹⁶ the values for $\Delta f'$ and $\Delta f''$ were those of Cromer.¹⁷ All calculations were performed using the TEXSAN¹⁸ crystallographic software package of the Molecular Structure Corp.

The final atomic coordinates and equivalent isotropic thermal parameters for the non-hydrogen atoms are given in Table 2, important distances and bond angles are listed in Table 3, and an ORTEP diagram of 6 is given in Figure 1. Additional crystallographic data are available as supplementary material.

Results and Discussion

The syntheses of several (S-alkyl trithiocarbonato)trimethylgermanium (S-alkyl trithiocarbonato) triphenylgermanium, and bis(S-alkyl trithiocarbonato) diphenylgermanium complexes were readily achieved in 73-85% yields by the reaction of the potassium salt of the appropriate trithiocarbonic acid with bromotriphenylgermane, dichlorodiphenylgermane, or iodotrimethylgermane, in CS_2 as solvent, in accord with the equations

 $Ph_3GeBr + KS_2CSR \rightarrow Ph_3Ge[S_2CSR] + KBr$

 $Ph_2GeCl_2 + 2KS_2CSR \rightarrow$ $Ph_2Ge[S_2CSR]_2 + 2KCl$ (R = Et, *i*-Pr, *n*-Pr, *n*-Bu)

- (12) Structure solution methods: Calbrese, J. C. PHASE-Patterson Heavy Atom Solution Extractor. Ph.D. Thesis, University of Wisconsin-Madison, 1972. Beurskens, P. T. DIRDIF: Direct Methods for Difference Structures—an automatic procedure for phase extension and refinement of difference structure factors. Technical Report 1984/ 1; Crystallography Laboratory: Toernooiveld, 6525 Ed Nijmegen, The Netherlands, 1984.
- (13) Least-squares, function minimized: $\sum w(|F_0| |F_0|)^2$, where $w = 4F_0^2$. $(F_0^2), \sigma^2(F_0^2) = [S^2(C + R^2B) + (pF_0^2)^2]/(Lp)^2, S = \text{scan rate}, C = \text{total}$ integrated peak count, R = ratio of scan time to background counting time, Lp = Lorentz-polarization factor, and p = p factor.
- (14) Standard deviation of an observation of unit weight: $[\sum w(|F_{c}| |F_{c}|)^{2}]$ $(N_0 - N_v)$]^{1/2}, where N_0 = number of observations and N_v = number of variables
- Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystal-(15) lography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2 A
- (16) Ibers, J. A.; Hamilton, W. C. Acta Crystallogr. 1964, 17, 781.
 (17) Cromer, D. T. International Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.3.1.
- (18) TEXSAN-TEXRAY Structure Analysis Package; Molecular Structure Corp.: The Woodlands, TX, 1985.

$$Me_3GeI + KS_2CSR \rightarrow Me_3Ge[S_2CSR] + KI$$

The salt was in excess to ensure complete reaction. In general, all of the compounds 1-12 are susceptible to moisture and air on any extensive exposure, as was found for the corresponding dithiocarbonates. They also readily undergo CS₂ elimination, which is a well-recognized process in transition metal chemistry,4,5 in accord with the equations

$$Ph_3Ge[S_2CSR] \rightarrow Ph_3Ge[SR] + CS_2$$

$$Me_{3}Ge[S_{2}CSR] \rightarrow Me_{3}Ge[SR] + CS_{2} \quad (R = Et, i-Pr, n-Pr, n-Bu)$$
$$Ph_{2}Ge[S_{2}CSR]_{2} \rightarrow Ph_{2}Ge[S_{2}CSR][SR] + CS_{2}$$

$$Ph_2Ge[S_2CSR][SR] \rightarrow Ph_2Ge[SR]_2 + CS_2$$

The eliminatation can be followed by recording the ¹H and ¹³C NMR spectra over time when peaks attributable to the decomposition products appear and increase in intensity, along with that attributable to CS_2 in the ¹³C NMR spectra, as the peaks of the $Ph_3Ge[S_2CSR]$, $Me_3Ge[S_2CSR]$, or $Ph_2Ge[S_2CSR]_2$ species decrease in intensity and eventually disappear. In general, the Ph₃Ge[S₂CSR] compounds are totally decomposed in 1-2 days at room temperature while the Me₃Ge[S₂CSR] species take 1-2 weeks. The total decomposition of the Ph₂Ge[S₂CSR]₂ series takes several days, the decomposition is sufficiently slow to allow for the ready identification of the intermediate Ph2Ge[S2CSR]-[SR] series, and of course the extent of decomposition decreases when the samples are kept at reduced temperatures. The presence of CS_2 , or indeed the lack of its presence, can also be detected readily in the vibrational spectra, so that it is possible to be sure that both the NMR and vibrational spectra of freshly prepared samples are indeed those of authentic samples of these novel series of (S-alkyl trithiocarbonato) organogermanium complexes.

NMR Spectra. The ¹H and ¹³C{H} NMR spectral data for compounds 1-12 are presented in Tables 4 and 5. All of the compounds are stored at -15 °C in sealed containers. The ¹H NMR spectra, recorded immediately after dissolving compounds 5-12 in CDCl₃, confirm that the diphenyl and trimethyl derivatives are over 98% pure relative to any hydrogen-containing impurities. All of the peaks have the fine structure and relative intensities expected for first-order spectra, except of course for the central CH_2 groups in the *n*-propyl and *n*-butyl groups of the trixanthate. Additional peaks are observed after a matter of hours which are readily assignable to the compounds that result from CS₂ elimination. Thus, as peaks assignable to Me₃GeSR grow, so those assignable to $Me_3Ge[S_2CSR]$ diminish and eventually disappear after approximately 1-2 weeks. For compounds 5, 7, and 8, evidence for CS_2 formation is apparent in the ¹³C NMR spectra within approximately 20 min by the emergence of a peak at 192.7 ppm attributable to CS_2 . At the same time, peaks assignable to Ph₂Ge[S₂CSR]₂ decrease in intensity and peaks attributable to $Ph_2Ge[S_2CSR][SR]$ appear (see Tables 6 and 7) soon followed by the appearance of those attributable to Ph₂-Ge[SR]₂. After approximately 5 days, the peaks attributable to 5, 7, and 8, as well as those attributable to the $Ph_2Ge[S_2CSR]$ -[SR] species, have essentially disappeared and the spectra show only the presence of CS_2 and $Ph_2Ge[SR]_2$. By contrast, the spectrum of a solid sample of $Ph_2Ge[S_2CS(i-Pr)]_2(6)$ which was left at room temperature for several months indicated that some of the intermediate decomposition product, $Ph_2Ge[S_2CS(i-Pr)]$ -[S(i-Pr)], was still present along with $Ph_2Ge[S(i-Pr)]_2$ in excess. For the triphenyl derivatives 1-4, the additional peaks arising from CS₂ elimination are apparent even when the ¹H and ¹³C NMR spectra are recorded immediately after dissolution of freshly-prepared samples. The assignment of peaks to Ph₃GeSR

Table 4. ¹H NMR Chemical Shifts for Compounds 1-12^{a-c}

compound	$Ge-(C_6H_5)/(CH_3)$	S-CH ₂ /CH	SC-CH ₃ '/CH ₂ '	SC2CH2"
$Ph_3Ge[S_2CSCEt](1)$	7.70–7.66, 7.44 7.37 (15H)	3.12 (2H, q, 7.5)	1.23 (3H, t, 7.5)	
$Ph_3Ge[S_2CS(i-Pr)]$ (2)	7.69-7.66, 7.42-7.37 (15H)	3.79 (1H, sept, 6.9)	1.30 (6H, d, 6.9)	
$Ph_3Ge[S_2CS(n-Pr)]$ (3)	7.68–7.62, 7.44–7.37 (15H)	3.10 (2H, t, 7.4)	1.63 (2H, m, 7.4, 7.3)	0.92 (3H, t, 7.3)
$Ph_3Ge[S_2CS(n-Bu)](4)$	7.67–7.61, 7.45–7.36 (15H)	3.10 (2H, t, 7.4)	1.58 (2H, m, 7.4, 6.9)	1.39 (2H, m, 6.9, 7.3)
$Ph_2Ge[S_2CSEt]_2(5)$	7.84–7.81, 7.42–7.39 (10H)	3.06 (4H, q, 7.4)	1.20 (6H, t, 7.4)	
$Ph_2Ge[S_2CS(i-Pr)]_2(6)$	7.84–7.81, 7.42–7.39 (10H)	3.68 (2H, sept, 6.9)	1.26 (12H, d, 6.9)	
$Ph_2Ge[S_2CS(n-Pr)]_2(7)$	7.84–7.81, 7.41–7.39 (10H)	3.04 (4H, t, 7.4)	1.58 (4H, m, 7.4, 7.3)	0.90 (6H, t, 7.3)
$Ph_2Ge[S_2CS(n-Bu)]_2(8)$	7.85–7.81, 7.42–7.38 (10H)	3.08 (4H, t, 7.3)	1.54 (2H, m, 7.3, 7.3)	1.31 (2H, m, 7.3, 7.3)
$Me_3Ge[S_2CSEt]$ (9)	0.72 (9H, s)	3.19 (2H, q, 7.5)	1.29 (3H, t, 7.5)	
$Me_{3}Ge[S_{2}CS(i-Pr)] (10)$	0.73 (9H, s)	3.90 (1H, sept, 6.9)	1. 36 (6H, d, 6.9)	
$Me_3Ge[S_2CS(n-Pr)]$ (11)	0.71 (9H, s)	3.19 (2H, t, 7.2)	1.68 (2H, m, 7.2, 7.2)	0.98 (3H, t, 7.2)
$Me_3Ge[S_2CS(n-Bu)]$ (12)	0.72 (9H, s)	3.19 (2H, t, 7.1)	1.63 (2H, m, 7.1, 7.1)	1.38 (2H, m, 7.1, 7.1)

^a The spectra were recorded in CDCl₃ and are reported in ppm from Me₄Si, using CHCl₃ as a second standard. ^b Number of protons, multiplicities (s = singlet, d = doublet, t = triplet, m = multiplet, sept = septet), and coupling constants in Hz are given in parentheses. ^c Peaks also assigned to SC₃-CH₃^{'''} at 0.93 (3H, t, 7.3) for 4, 0.86 (3H, t, 7.3) for 8, and 0.90 (3H, t, 7.1) for 12.

Table 5. ¹³C NMR Chemical Shifts for Compounds 1-12^a

Ge-C ₆ H ₅ /CH ₃									
compound	<i>C</i> (1)	C(2,6)	<i>C</i> (4)	C(3,5)	SCH"	SCCH,	SC ₂ CH ₂	SC₃CH₃	CS_2
$Ph_3Ge[S_2CSEt](1)$	134.60	134.93	130.11	128.62	34.16	12.61			222.07
$Ph_3Ge[S_2CS(i-Pr)]$ (2)	134.70	134.93	130.08	128.61	44.74	21.84			221.58
$Ph_3Ge[S_2CS(n-Pr)]$ (3)	134.63	134.90	130.21	128.39	41.86	21.18	13.62		222.27
$Ph_3Ge[S_2CS(n-Bu)]$ (4)	134.69	134.98	130.07	128.59	39.75	29.63	22.19	13.71	222.24
$Ph_2Ge[S_2CSEt]_2(5)$	134.40	134.14	130.59	128.65	34.29	12.55			222.34
$Ph_2Ge[S_2CS(i-Pr)]_2$ (6)	134.61	134.22	130.52	128.68	44.99	21.73			221.36
$Ph_2Ge[S_2CS(n-Pr)]_2(7)$	134.40	134.26	130.56	128.62	41.98	21.11	13.55		222.56
$Ph_2Ge[S_2CS(n-Bu)]_2(8)$	134.37	134.28	130.56	128.62	39.90	29.56	22.16	13.67	222.50
$Me_3Ge[S_2CSEt]$ (9)	2.80				33.74	12.80			226.31
$Me_{3}Ge[S_{2}CS(i-Pr) (10)$	2.80				44.27	21.73			225.96
$Me_3Ge[S_2CS(n-Pr)]$ (11)	2.81				41.46	21.38	13.68		226.48
$Me_3Ge[S_2CS(n-Bu)]$ (12)	2.80				39.34	29.87	22.27	13.78	226.41

^a The spectra were recorded in CDCl₃ and are reported in ppm from Me₄Si.

Table 6. ¹H NMR Chemical Shifts for the Decomposition Intermediates $Ph_2Ge[S_2CSR][SR]$ (R = Et, *i*-Pr, *n*-Pr, *n*-Bu) Along with Those of $Ph_2Ge[S_2CSEt]_2$ and $Ph_2Ge[SEt]_2$ for Comparison^{4-c}

		[S ₂ CSR]				[SR]			
compound	$(C_6H_5)_2Ge$	S ₂ CSCH	S ₂ CSCCH	S ₂ CSC ₂ CH	S ₂ CSC ₃ CH	SC <i>H</i>	SCCH	SC ₂ CH	SC ₃ CH
$Ph_2Ge[S_2CSEt]_2$ (5)	7.84–7.81 7.42–7.34	3.06 (q) [7.4]	1.20 (t) [7.4]						
$Ph_2Ge[SEt]_2$	7.66–7.64 7.41–7.38					2.62 (q) [7.4]	1.25 (t) [7.4]		
$Ph_2Ge[S_2CSR][SR] (R = Et)$	7.73–7.71 7.43–7.38	3.13 (q) [7.4]	1.24 (t) [7.4]			2.47 (q) [7.4]	1.15 (t) [7.4]		
$Ph_2Ge[S_2CSR][SR] (R = i-Pr)$	7.74–7.66 7.45–7.38	3.65 (sp) [6.9]	1.30 (d) [6.9]			2.90 (sp) [6.8]	1.18 (d) [6.8]		
$Ph_2Ge[S_2CSR][SR] (R = n-Pr)$	7.72–7.69 7.42–7.38	3.10 (t) [7.3]	1.63 (m)	0.98 (t) [7.3]		2.41 (t) [7.3]	1.50 (m)	0.82 (t) [7.3]	
$Ph_2Ge[S_2CSR][SR] (R = n-Bu)$	7.73–7.70 7.44–7.38	3.12 (t) [7.4]	1.57 (m)	1.38 (m)	0.89 (t) [7.4]	2.44 (t) [7.4]	1.49 (m)	1.28 (m)	0.75 (t) [7.3]

^a The spectra were recorded in CDCl₃ and are reported in ppm from Me₄Si, using CHCl₃ as a second standard. ^b Multiplicities (d = doublet, t = triplet, m = multiplet, sp = septet) are given in parentheses. ^c Coupling constants in Hz are given in square brackets.

Table 7. ¹³C NMR Chemical Shifts of the Decomposition Intermediates $Ph_2Ge[S_2CSR][SR]$ (R = Et, *i*-Pr, *n*-Pr, *n*-Bu) Along with Those of $Ph_2Ge[S_2CSEt]_2$ and $Ph_2Ge[SEt]_2$ for Comparison^a

	$(C_6H_5)_2Ge$			[S ₂ CSR]				[SR]					
compound	C_1	C _{2,6}	C4	C _{3,5}	S ₂ CS	S ₂ CSC	S ₂ CSCC	S_2CSC_2C	S_2CSC_3C	SC	SCC	SC_2C	SC ₃ C
$Ph_2Ge[S_2CSEt]_2$ (5)	134.40	134.28	130.59	128.65	222.34	34.29	12.55						
Ph ₂ Ge[SEt] ₂	135.99	133.86	130.27	128.68						22.54	18.13		
$Ph_2Ge[S_2CSR][SR] (R = Et)$	134.83	134.63	130.60	128.60	222.24	34.09	12.70			23.28	18.35		
$Ph_2Ge[S_2CSR][SR] (R = i-Pr)$	134.95	134.18	130.49	128.66	221.75	44.78	21.64			34.92	27.47		
$Ph_2Ge[S_2CSR][SR] (R = n-Pr)$	134.69	134.12	130.65	128.67	222.43	41.79	21.14	13.58		30.83	26.18	13.30	
$Ph_2Ge[S_2CSR][SR](R = n-Bu)$	134.73	134.15	130.52	128.68	222.40	39.72	29.65	22.19	13.67	34.90	28.53	21.73	13.55

^a The spectra were recorded in CDCl₃ and are reported in ppm from Me₄Si.

species was confirmed by the preparation of authentic samples. Thus all of the assignments in Tables 4 and 5 are definitive.

The signals due to the phenyl groups in compounds 1-4 and 5-8 are very similar in appearance and chemical shift to those of the analogous dithiocarbonate series reported earlier,⁸ so the chemical shifts depend on the presence of the Ge-S link(s) rather

than the nature of the thiocarbonate attached to sulfur.^{8,9,19-21} The chemical shifts of the hydrogen atoms on the carbon atom attached to sulfur (*i.e.*, SCH₂/SCH) are similar for a given trixanthate regardless of the number of phenyl groups attached to germanium, as was observed for the corresponding OCH₂/OCH groups in the analogous dithiocarbonates, and are shifted

Table 8. Selected Features and Their Assignments in the Vibrational Spectra of Compounds $1-4^{a,b}$

Ph ₃ Ge[S ₂	$[S_2CSEt] (1) \qquad Ph_3Ge[S_2CS]$		CS(<i>i</i> -Pr)] (2)	Pr)] (2) $Ph_3Ge[S_2CS(n-Pr)]$ (3)			$Ph_3Ge[S_2CS(n-Bu)]$ (4)		
IR¢	Raman ^d	IR ^c	Raman ^d	IR¢	Raman ^d	IR¢	Raman ^d	assgnt	
1575 w	1583 (23)	1579 vs	1584 (28)	1580 w	1584 (25)	1579 vw	1584 (25)	<i>l</i> -phenyl	
1426 m	n.o.*	1432 ms	n.o.	1430 m	n.o.	1430 ms	n.o.	n-phenyl	
1180 w	1185 (10)	1185 vw	1185 (8)	11 87 w	1185 (5)	1186 w	1185 (7)	a-phenyl	
1156 w, sh	1156 (13)	1156 mw	1158 (10)	1158 m	1158 (6)	1158 vw	1157 (9)	e-phenyl	
1083 s	1084 (11)	1083 s	1083 (7)	1088 s	1088 (16)	1088 s	1088 (15)	q-phenyl	
1076 sh	1076 (32)	1069 s	1072 (20)	1060 sh	1063 (18)	1065 s, sh	1063 (13)	$v(S_2CSC)_{a}^{g}$	
1055 sh	1058 (4)	1044 s	1043 (29)	1049 m	1050 (15)	1058 s	1056 (20)	v(S2CSC)p8	
1024 ms	1027 (15)	1027 ms	1027 (20)	1026 ms	1026 (30)	1027 sh	1027 (20)	b-phenyl	
998 w, sh	999 (Ì00)	1003 sh	999 (ÌOO)	999 w	999 (100)	998 w	999 (Ì00)	p-phenyl	
802 s	n.o.	808 s	n.o.	810 s	n.o	811 s	n.o.	$v(S_2CSC)_c^g$	
735 s	n.o.	735 s	n.o.	735 s	n.o.	735 s	n.o.	f-phenyl	
694 s	n .o.	697 s	n.o.	698 s	n.o.	698 s	n.o.	v-phenyl	
665 vw, sh	665 (17)	665 sh	665 (14)	665 sh	668 (20)	665 sh	665 (18)	r-phenyl∕	
508 w	508 (25)	528 w	526 (21)	528 w	510 (17)	508 w	509 (10)	v(S ₂ CSC) _d ^g	
459 s	n.o.	463 s	n.o.	460 s	n.o.	463 s	n.o.	y-phenyl	
407 m	411 (9)	403 ms	405 (12)	403 ms	408 (5)	401 ms	402 (5)	v(Ge-S)	
335 s	n.o.	337 s	n.o.	335 s	n.o.	336 s	n .o.	t-phenyl	
316 s	316 (10)	318 s	n.o.	318 s	n.o.	317 s	n.o.	$\delta(S_2 CSC)$	
280 s	280 (12)	280 s	279 (5)	279 ms	n.o.	279 m	n.o.	u-phenyl	
228 w, br	228 (33)	229 w, br	229 (17)	229 w, br	229 (20)	227 w, br	223 (13)	x-pheny⊮	
192 m	196 (13)	191 m	196 (13)	194 m	197 (8)	194 w, br	193 (10)	$\rho(S_2CSC)$	

^a Parentheses denote relative intensities in the Raman effect. ^b s = strong, m = medium, w = weak, sh = shoulder, br = broad, and v = very. ^c Run neat between KBr plates down to 400 cm⁻¹ and between polyethylene below 400 cm⁻¹. ^d Run neat in sealed glass capillaries. ^e Not observed. ^f X-sensitive modes. ^g In the trixanthate salts these appear at approximately 1030 s, 1021 (29); 998 s, 998 (27); 847 vs, 847 (26); and n.o., 516 (100).

toward Me₄Si relative to the corresponding *O*-linked dithiocarbonates. The shift is between 1.10 and 1.16 ppm for the ethyl and *n*-butyl derivatives but larger, between 1.62 and 1.68 ppm, for the two propyl derivatives.⁸ The chemical shifts for the hydrogen atoms further from sulfur or oxygen show decreasing differences but in the opposite sense, so that for Ph₃Ge[S₂-CSCH₂CH₃] the CH₃ chemical shift is 1.23 ppm compared to 0.77 ppm for Ph₃Ge[S₂COCH₂CH₃], a shift of 0.56 ppm away from Me₄Si. With the longer chain *n*-butyl species, the chemical shifts of the terminal CH₃ groups hardly differ; for Ph₃Ge[S₂-CSCH₂CH₂CH₂CH₃] the CH₃ chemical shift is 0.93 ppm, which is similar to the value of 0.89 ppm for Ph₃Ge[S₂COCH₂CH₂-CH₂CH₃].

For the Me₃Ge[S₂CSR] species 9–12, the CH₃ chemical shifts of methyl groups attached to germanium are essentially the same (0.71–0.73 ppm) regardless of the trixanthate group, and the values are close to that reported for Me₃Ge[S₂CNMe₂], 0.67 ppm. This is consistent with the electronegativity of the trithiocarbonate group being qualitatively similar to or slightly greater than that of the dithiocarbamate group.^{19,20} The chemical shifts of the protons in each of the trithiocarbonate groups are similar to those for the corresponding triphenyl series 1–4, with the values of the coupling constants being slightly higher for the trithiocarbonate series than for the corresponding dithiocarbonates. The similarity of all the spectra is indicative of the trixanthate groups being in identical environments in compounds 1–12.

In the ¹³C NMR spectra, the chemical shifts of the ethyl, *i*-propyl, *n*-propyl, and *n*-butyl groups of the ligands are similar regardless of whether methyl or phenyl groups are attached to germanium or the number of such groups. Comparison with the corresponding S₂COR derivatives^{8,9} indicates that substitution of an oxygen atom for sulfur has little influence on the chemical shifts beyond the carbon atom directly bonded to the chalcogens. However, there is a large difference, consistently approximately 35 ppm toward Me₄Si, in the values of the chemical shifts of the carbon atom when it is directly attached to sulfur instead of oxygen. Thus, the chemical shift of the CH₂ carbon in Ph₂Ge-[S₂CSCH₂CH₃]₂ is 34.29 ppm compared to 69.94 ppm for Ph₂- Ge[S₂COCH₂CH₃].²⁸ There is a corresponding shift of approximately 14 ppm away from Me₄Si for the central C atom of the S₂CSR group, so that the S₂CS chemical shift is between 221.36 and 226.41 ppm for compounds 1–12 compared to 207.04 and 212.12 ppm for S₂CO in a variety of analogous dithiocarbonates. The (CH₃)₃Ge chemical shift of approximately 2.80 ppm for all of the trimethyl derivatives is consistent with the concept that trixanthate and dithiocarbamate groups have similar group electronegativities,^{19,20} and the similarities in the values of the ¹³C NMR chemical shifts again indicate similar trixanthate environments for 1–12.

The ¹H and ¹³C NMR spectra for the Ph₂Ge[S₂CSR][SR] species are given in Tables 6 and 7. The values of the chemical shifts are close to those of the initial Ph₂Ge[S₂CSR]₂ compound and the final decomposition product, Ph₂Ge[SR]₂, but differ sufficiently to allow ready identification. This is demonstrated by the inclusion of the data for both Ph₂Ge[S₂CSEt]₂ and Ph₂-Ge[SEt]₂ in the body of the tables.

Infrared and Raman Spectra. Distinctive features in the infrared and Raman spectra and their assignments are given in Tables 8-10 for compounds 1-4, 5-8, and 9-12 respectively. Three intense peaks between 1250 and 1020 cm⁻¹ in the infrared spectra of the corresponding dithiocarbonates,⁸⁻¹⁰ which were unambiguously assigned to S₂COC stretching vibrations, dominated the spectra relative to peaks assignable to phenyl or alkyl groups.^{8,9} These peaks were very weak or were not observed in the Raman effect, but a strong peak between 650 and 690 cm⁻¹ was assigned to the fourth S₂COS stretch. The smaller changes in dipole moments and larger polarizabilities to be expected for S₂CSC vibrations result in three strong, but less dominant, peaks between 1088 and 802 cm⁻¹ in the infrared spectra of compounds 1-12, with corresponding significant features in the Raman effect. These are readily assigned to the first three S_2CSC stretching vibrations. The fourth S_2CSC stretch is observed between 508 and 534 cm⁻¹, close to the position reported for the symmetric stretch in the CS_3^{2-} ion.²² The assignments in Tables 8 and 9 are facilitated by distinct features associated with phenyl groups attached to germanium, which consist of three pairs of peaks of decreasing intensity at approximately 740 and 695, 460 and 335, and 1435 and 1095 cm⁻¹ in the infrared spectra and the very intense peak

⁽¹⁹⁾ Chadha, R. K.; Drake, J. E.; Sarkar, A. B. Inorg. Chim. Acta 1988, 143, 31.

 ⁽²⁰⁾ Chadha, R. K.; Drake, J. E.; Sarkar, A. B. Inorg. Chem. 1986, 25, 2201.
 (21) Chadha, R. K.; Drake, J. E.; Sarkar, A. B. Inorg. Chem. 1985, 24, 3156.

⁽²²⁾ Ross, S. D. Inorganic IR and Raman Spectra; McGraw-Hill: London, 1972; p 160.

Table 9. Selected Features and Their Assignments in the Vibrational Spectra of Compounds 5-8^{a,b}

Ph2Ge[S2	$_{2}CSEt]_{2}(5)$	Ph ₂ Ge[S ₂ G	$CS(i-Pr)]_2(6)$	$Ph_2Ge[S_2]$	$Ph_2Ge[S_2CS(n-Pr)]_2(7)$		S(n-Bu)] ₂ (8)	
IR¢	Raman ^d	IR ^e	Raman ^d	IR¢	Raman ^d	IR¢	Raman ^d	assgnt
1578 vw	1584 (32)	1574 vw	1582 (21)	1 582 w	1583 (11)	1582 vw	1583 (20)	<i>l</i> -phenyl
1431 s	n.o./	1431 mw	n.o.	1433 m	n.o.	1433 ms	n.o.	n-phenyl
1185 w	1185 (5)	1182 vw	1182 (4)	1183 w	1186 (2)	1183 vw	1186 (3)	a-phenyl
1150 vw	1159 (8)	1152 w	1157 (9)	1158 vw	1154 (4)	1154 vw	1154 (5)	e-phenyl
[1088]\$	1088 (6)	1084 ms	1080 (3)	1087 s	1082 (7)	1086 s	1084 (15)	q-phenyl ^h
1075 vs	1073 (19)	1066 s	1071 (70)	1060 s	1055 (6)	1060 vs, br	1062 (15)	$v(S_2CSC)_a^l$
1031 s	1043 (5)	1043 s	1043 (68)	1044 s	1048 (6)	1052 vs	1048 (25)	$v(S_2CSC)_b^i$
[1026]	1026 (26)	1024 ms	1026 (20)	1026 s	1025 (17)	1026 m	1025 (19)	b-phenyl
1001 sh	999 (100)	999 sh	1000 (100)	998 sh	998 (100)	998 w	998 (100)	p-phenyl
813 s	n.o.	816 vs	n.o.	814 vs	n.o.	823 s, br	n.o.	$v(S_2CSC)_c^i$
735 s	n.o.	735 s	n.o.	733 s	n.o.	735 s	n.o.	f-phenyl
692 s	n.o.	693 s	n.o.	691 s	n.o.	692 s	n.o.	v-phenyl
670 sh	672 (12)	672 w	670 (5)	674 m	670 (15)	675 sh	670 (10)	r-phenyl ^h
515 vw	512 (17)	533 vw	534 (64)	510 w	509 (10)	510 sh	513 (14)	$v(S_2CSC)_d^i$
456 ms	n.o.	456 ms	n.o.	458 s	n.o.	459 s	n.o.	y-phenyl ^h
412 ms	415 (10)	410 mw	410 (41)	404 ms	410 (4)	419 ms	419 (8)	$v(Ge-S)_{asym}$
389 ms	380 (8)	385 s	380 (5)	362 ms	362 (7)	367 ms	367 (7)	v(Ge-S) _{sym}
336 sh	n.o.	336 sh	n.o.	336 sh	n.o.	336 ms	n.o.	t-phenyl ^h
326 s	n.o.	329 s	n.o.	326 s	n.o.	326 s	n.o.	$\delta(S_2 CSC)$
286 m	280 (6)	283 m	285 (10)	284 ms	284 (7)	279 ms	288 (3)	u-phenyl ^h
250 m	237 (10)	239 s	239 (20)	250 ms	248 (5)	233 ms	237 (13)	x-phenyl ^h
195 m	188 (15)	188 ms	185 (37)	1 97 m	196 (9)	200 ms	200 (13)	$\rho(S_2CSC)$

^a Parentheses denote relative intensities in the Raman effect. ^b s = strong, m = medium, w = weak, sh = shoulder, br = broad, and v = very. ^c Run neat between KBr plates down to 400 cm⁻¹ and between polyethylene below 400 cm⁻¹. ^d Run neat in glass capillaries. ^e Run as CsI pellets. ^f Not observed. ^g Square brackets indicate expected peak is masked by a stronger, overlapping feature. ^h X-sensitive modes. ⁱ In the trixanthate salts these appear at approximately 1030 s, 1021 (29); 998 s, 998 (27); 847 vs, 847 (26); and n.o., 516 (100).

Table 10. Selected Features and Their Assignments in the Vibrational Spectra of Compounds 9-12^{a,b}

Me ₃ Ge[S	$Me_3Ge[S_2CSEt]$ (9)		CS(<i>i</i> -Pr)] (10)	$Me_{3}Ge[S_{2}CS(n-Pr)] (11)$		$Me_{3}Ge[S_{2}CS(n-Bu)] (12)$		
IR¢	Raman ^d	IR ^c	Raman ^d	IR¢	Raman ^d	IR¢	Raman ^d	assgnt
1070 s	1072 (100)	1088 s	1088 (69)	1054 s	1054 (64)	1078 s, sh	1083 (30)	$v(S_2CSC)_a^e$
1029 s	1026 (62)	1039 s	1040 (100)	1039 s	1044 (69)	1055 s	1049 (100)	$v(S_2CSC)_b^e$
840 s, sh	n.o.f	840 s, sh	n.o.	838 s	n.o.	840 s, sh	n.o.	$\rho(CH_3-Ge)$
810 vs	810 (2)	810 vs	815 (6)	803 vs	805 (7)	805 vs	805 (6)	$v(S_2CSC)_c^e$
612 ms	608 (42)	612 ms	609 (31)	612 s	608 (44)	612 s	608 (35)	v(Ge-C) _{asvm}
567 m	568 (70)	568 m	567 (65)	568 m	568 (100)	568 m	567 (98)	v(Ge-C) _{sym}
509 vw	509 (54)	525 vw	527 (59)	510 w	509 (57)	510 w	509 (54)	$v(S_2CSC)_d^e$
398 m	397 (35)	399 ms	395 (42)	395 m	394 (21)	396 ms	397 (34)	v(Ge-S)
318 w	318 (10)	330 m	330 (10)	322 w	320 (7)	330 vw	n.o.	$\delta(S_2 CSC)$
195 m, br	195 (50)	192 m	187 (50)	195 s	195 (60)	195 ms	191 (50)	$\rho(S_2CSC)$

^a Parentheses denote relative intensities in the Raman effect. ^b s = strong, m = medium, w = weak, sh = shoulder, br = broad, and v = very. ^c Run neat between KBr plates down to 400 cm⁻¹ and between polyethylene below 400 cm⁻¹. ^d Run neat in sealed capillaries. ^e In the trixanthate salts these appear at approximately 1030 s, 1021 (29); 998 s, 998 (27); 847 vs, 847 (26); and n.o., 516 (100). ^f Not observed.

close to 1000 cm⁻¹ in the Raman spectra.⁸ The strong methyl rocking mode associated with methylgermanes at approximately 840 cm⁻¹ is a distinctive feature in the infrared spectra of compounds **9–12** in Table 10. The asymmetric and symmetric Ge–C stretches are assigned at approximately 610 and 568 cm⁻¹, respectively, for all four trimethyl derivatives. These values are close to those for Me₃GeBr²³ and could indicate that the C–Ge–C angles in **9–12** are similar to those of 112.4 (1)° in Me₃GeBr.²⁴ The Ge–S stretching vibration close to 400 cm⁻¹ is as expected for a monodentate-linked thiocarbonate.^{8–10}

Molecular Structure of Ph₂Ge[S₂CS(*i*-Pr)]₂ (6). Diphenylbis-(S-isopropyl trithiocarbonato)germanium (6) crystallizes in the space group $P\overline{1}$. The ORTEP diagram (Figure 1) illustrates, along with Table 3, that the immediate environment about germanium is that of a distorted tetrahedron. The Ge–C bond lengths of 1.925(7) and 1.941(9) Å are typical for Ph₂GeL₂species, where L is a sulfur-bonding moiety. Comparable Ge–C bond lengths are 1.927(6) and 1.939(7) Å in Ph₂Ge[S₂CO(*i*-Pr)]₂⁸ and 1.928(3) Å in Ph₂[S₂CNEt₂]₂.¹⁹ The values of the C–Ge–C and S–Ge–S angles of 118.1(3) and 87.3(2)°, respectively, indicate more distortion from the all-tetrahedral angle than was found for the analogous dithiocarbonate, $Ph_2Ge[S_2CO(i-Pr)]_2$, where the corresponding angles are 115.6(3) and 103.2(1)°, respectively.8 However, the distortion is slightly less than that observed in diphenylbis(N,N-diethyldithiocarbamato)germanium, Ph2Ge[S2-CNEt₂]₂, where the C-Ge-C and S-Ge-S angles are 121.8(1) and 84.4(1)°, respectively.¹⁹ These larger distortions are associated with the fact that a terminal sulfur (C=S) atom is oriented toward the germanium at Ge--S distances of 3.183(1) Å for Ph2- $Ge[S_2CNEt_2]_2$ and 3.224(5) and 3.304(5) Å for $Ph_2Ge[S_2CS (i-Pr)_2$ (6). By contrast, in Ph₂Ge[S₂CO(*i*-Pr)]₂, where the terminal sulfur atom is oriented away from the germanium center, the shortest distance between Ge and a terminal S atom is 4.753-(4) Å.⁸ Whether distances of 3.1-3.3 Å, which are considerably less than the sum of the van der Waals radii of 3.75 Å,²⁵ are sufficiently short to be considered as partial bonds may be questionable, but there appears to be a relationship between these Ge--S nonbonding or anisobonding distances and the distortion from all tetrahedral angles. Also the C=S bonds in 6, averaging 1.63(1) Å, are slightly longer than those in $Ph_2Ge[S_2CO(i-Pr)]_2$, 1.61(1) Å, which could be another indication of the presence of secondary interactions leading to the orientation of the terminal

⁽²³⁾ van de Vondel, D. F.; van der Kelen, G. P.; van Hoodydonk, G. J. Organomet. Chem. 1970, 23, 431.
(24) Li, Y. S.; Durig, J. R. Inorg. Chem. 1973, 12, 306.

⁽²⁵⁾ Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960.

C=S rather than the CSR moiety toward the germanium center. The average bite angle of $62.4(7)^{\circ}$ in 6 is essentially the same as that in Ph₂Ge[S₂CNEt₂]₂, and anisobidentate linkages appear to give a better overall description of the bonding of dithiocarbamates to germanium.

The S-CH(CH₃)₂ bonds in the two trixanthate groups are slightly longer, 1.82(1) and 1.84(1) Å, than the sum of the covalent radii of S and C. The average C-S-CH(CH₃)₂ angle, 104.6- $(2)^{\circ}$, is only slightly larger than the Ge-S-C angles, 100.3(4) and 102.6(3)°, which is also consistent with the S--CH(CH₃)₂ bond having no π -character. The nominally single C-S bonds of the thio-carbon atom are shorter than the sum of their covalent radii, and the average bond lengths are the same, an average of 1.745(10) Å for both C-SGe and C-SCH(CH₃)₂, which suggests that any delocalization of π -electron density into these bonds is identical whether sulfur is bonded to the germanium center or to the isopropyl group. The terminal C=S bonds, averaging 1.62(2) Å, are considerably shorter than the other C-S bonds, and in each of the trixanthate groups, the two angles around the planar thio-carbon atom that involve the terminal bond, $S=C-SGe and S=C-SCH(CH_3)_2$, are very similar, averaging 125.5(3)°, compared with an average of 109.0(2)° for the GeS-C-SCH(CH₃)₂ angles.

The Ge–S bond lengths of 2.278(5) and 2.284(5) Å in Ph₂-Ge[S₂CS(*i*-Pr)]₂ are longer than those of 2.252(3) Å in the analogous dithiocarbonate, Ph₂Ge[S₂CO(*i*-Pr)]₂, in which there are no secondary interactions involving the terminal sulfur atoms,⁸ but similar to those in Ph₂Ge[S₂CNEt₂]₂ and other dithiocarbamates where there is secondary bonding. In view of the similarities noted in the spectra of the trixanthates discussed above, it is reasonable to assume that all of the members of this new class of S-alkyl trithiocarbonate (xanthate) derivatives of organogermanes have the anisobidentate bonding demonstrated in the molecular structure of Ph₂Ge[S₂CS(*i*-Pr)]₂.

Acknowledgment. We wish to thank the Natural Sciences and Engineering Research Council of Canada, Imperial Oil Canada, and the University of Windsor for financial support.

Supplementary Material Available: Tables SI-SIII, listing experimental details, anisotropic thermal parameters of non-hydrogen atoms, and final fractional coordinates and thermal parameters for hydrogen atoms (3 pages). Ordering information is given on any current masthead page. Structure factor tables may be obtained directly from the authors.